Justifying the small-world phenomenon via random recursive trees
نویسندگان
چکیده
منابع مشابه
Justifying the small-world phenomenon via random recursive trees
We present a new technique for proving logarithmic upper bounds for diameters of evolving random graph models, which is based on defining a coupling between random graphs and variants of random recursive trees. The advantage of the technique is three-fold: it is quite simple and provides short proofs, it is applicable to a broad variety of models including those incorporating preferential attac...
متن کاملBranches in random recursive k-ary trees
In this paper, using generalized {polya} urn models we find the expected value of the size of a branch in recursive $k$-ary trees. We also find the expectation of the number of nodes of a given outdegree in a branch of such trees.
متن کاملDegrees in $k$-minimal label random recursive trees
This article describes the limiting distribution of the degrees of nodes has been derived for a kind of random tree named k-minimal label random recursive tree, as the size of the tree goes to infinity. The outdegree of the tree is equal to the number of customers in a pyramid marketing agency immediatly alluring
متن کاملbranches in random recursive k-ary trees
in this paper, using generalized {polya} urn models we find the expected value of the size of a branch in recursive $k$-ary trees. we also find the expectation of the number of nodes of a given outdegree in a branch of such trees.
متن کاملLimit distribution of the degrees in scaled attachment random recursive trees
We study the limiting distribution of the degree of a given node in a scaled attachment random recursive tree, a generalized random recursive tree, which is introduced by Devroye et. al (2011). In a scaled attachment random recursive tree, every node $i$ is attached to the node labeled $lfloor iX_i floor$ where $X_0$, $ldots$ , $X_n$ is a sequence of i.i.d. random variables, with support in [0,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Random Structures & Algorithms
سال: 2016
ISSN: 1042-9832
DOI: 10.1002/rsa.20648